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EXECUTIVE SUMMARY 
 

 

Detecting human behavior (for example grabbing the top of a steering wheel before a turn, or 

looking over the shoulder for a bicyclist) for the purposes of building a model to predict future 

vehicle trajectories (to avoid collisions) is very difficult. These gestures are probably very strong 

predictors for forecasting trajectories over a short time horizon. However, at present there are not 

any practical, scalable traffic safety systems that consider human body cues to predict vehicle 

trajectories.  

 

Deep learning (DL) offers a potential way of inferring future user trajectories, through the 

analysis of user trajectory datasets, and the use of neural networks for detecting users positions 

and relevant user features. However, most deep learning models fail at capturing the complexity 

of the problem. One of the main issues of currently used models is their lack of generalization on 

larger datasets (overfit).  

 

In this project, our objective is to develop a new class of deep models based on ensemble 

averaging (EA). Ensemble averaging allows the results of the model to be more robust to 

changes in the data, and therefore leads to models that have better predictive power. The Inner 

Ensemble Average method is introduced. The method is validated in benchmark image 

recognition datasets that are standard in the Machine Learning community. This method will 

then be applied to trajectory detection and user position inference in future work. 
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Chapter 1.  Introduction 

Ensemble learning (Rokach, 2010; Zhou, 2012) is the method of combining multiple 

models trained over the same dataset or a random set of datasets to improve the model 

performance. The methods of ensemble have been widely used in deep learning (Qiu et al., 2014; 

Dietterich, 2000; Drucker et al., 1994) to improve the overall model accuracy. Combining neural 

networks in ensemble is known to reduce the variance in prediction, in other words, it helps the 

network to generalize more than the usage of one network (Krogh & Vedelsby, 1995; Geman et 

al., 1992; Zhou et al., 2002). The work by Stahlberg & Byrne (2017) proposed a method of 

combining multiple models where it unfolds the ensemble into a larger network. Lee et al. (2015) 

discussed the power of ensemble in training CNN and proposed a method for training ensemble 

by a specific loss function rather than averaging the predictions of the models. 

Convolutional Neural Networks (CNNs) (Lecun et al., 1998) are extremely successful 

architectures that are widely used in different areas such as computer vision (Krizhevsky et al., 

2012), text analysis (dos Santos & Gatti, 2014; Lai et al., 2015), and even general temporal 

sequence problems (Bai et al., 2018). CNN is a biologically inspired simulation of the cats visual 

cortex (Hubel & Wiesel, 1968). Usually, CNN is composed of a convolutional layer followed by 

a pooling layer. Alternating convolutional layers and pooling layers are stacked to introduce 

more depth to the model being constructed. We call the connection of convolutional layers and 

pool layers a features extraction head. The features extraction head may or may not be connected 

to a fully-connected layer based on the application of the deep model. One important feature of 

convolutional layers that the weights are shared for creating the features. By having this feature 

of shared weights, convolutional layers do not strongly contribute to the total parameter size of 

the deep model unlike the contribution of the fully-connected layer. 

In this work, we show empirically, visually and through similarity score analysis that 

replacing ordinary convolutional layer by an Inner Ensemble Average (IEA) of convolutional 

layers in a CNN can reduce the variance of this model. We propose it as a convenient technique 

to improve the performance of CNN predictive models. 

This work is organized as follows, section 3 defines IEA mathematically. Section 4 

shows the experiments performed on different benchmark datasets including MNIST (LeCun, 

1998), rotatedMNIST (Larochelle et al., 2007), CIFAR-10, and CIFAR-100 (Krizhevsky & 

Hinton, 2009) using well-known deep CNN architectures. We show the results of convolutional-

layer-only models, IEA of convolutional layers models and ensemble of both techniques. In 

section 5, a visual analysis of the features generated by IEA is performed. Section 5 also 

introduces a metric to measure the similarity between the features generated from IEA and 

convolutional layers. 
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Chapter 2.  Literature Review 

Ensemble is one of the meta-algorithms that combines a set of independently trained 

networks into one predictive model in order to improve performance. Other methods include 

bagging and boosting that reduce predictive variance and bias (Opitz & Maclin, 1999). Ensemble 

by averaging several models is one of the most common approaches and extensively adopted in 

modern deep learning practice, especially in related contests (Russakovsky et al., 2015; 

Rajpurkar et al., 2016). One variation is to ensemble the same model at different training epochs 

(Qiu et al., 2014). Though inspired by ensemble methods that average independent networks, the 

proposed IEA structure is fundamentally different in that a) it replicates small units, namely 

convolutional layers, within CNN structures and b) the replications are trained jointly. 

Our work is reminiscent of Maxout (Goodfellow et al., 2013), which replicates weight 

matrices and take the maximum from the features produce by those linear layers. Maxout can be 

considered as a special activation method that behaves as a learnable piecewise-linear function. 

IEA differs from Maxout since IEA averages convolutional layers after non-linearity layers 

(Figure 4.1). While Maxout is designed to approximate any activation function, our intuition is 

as follows: an ensemble of models are used essentially to reduce variance in other terms to 

increase models generalization. We hypothesize that the overall variance of the model can be 

decomposed into sub-layers within the model and each layer contributes somehow into this 

variance. If we used inner ensemble average we will reduce the sub-variances of each layer 

resulting in an overall variance reduction. Therefore, we primarily explore the averaging method 

in our setting. 

ResNet (He et al., 2015) and its variants (Huang et al., 2017; Szegedy et al., 2017) have 

become standard for recognition tasks. One can argue that the concept of IEA bears some 

similarity with the additive behaviors of ResNet and variants (He et al., 2016). Wide Resnet 

(Zagoruyko & Komodakis, 2016) explores the idea that convolutional layers can have larger 

dimension while reducing the overall model depth. ResNext (Xie et al., 2017) also makes the 

model wider by introducing complicated pathways within Resnet blocks and achieved 

competitive results with more shallow networks. IEA further exploits the possibility of 

increasing block width by simply plugging into existing models, replicating any convolutional 

layers within IEA. In our paper, Wide ResNet and ResNext with IEA are intensively 

experimented and analyzed in comparison with regular ones. Some other widely-used CNN 

architectures are also explored. 
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Chapter 3.  Inner Ensemble Average (Iea) 

The IEA concept can be applied to a CNN architecture by replacing any convolutional 

layer (Clayer) with average ensemble of several replications of a convolutional layer (along with 

the following batch normalization (Ioffe & Szegedy, 2015) and activation layer, which means 

averaging is performed after the non-linearity). In any deep CNN architecture to use the IEA 

concept the Clayer is replaced by CIEA. The CIEA is defined as follows: 

  (1) 

where m = {x|x ∈ N+ −{1}} is the number of inner convolutional layers which is a 

design choice. An illustration of IEA concept within a CNN is found in Figure 4.1. 

When using IEA, the same settings of the replaced convolutional layer are applied to 

each IEA element individually. 
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Chapter 4.  Experiments and Analysis 

In the following section, we empirically evaluate the performance of IEA convolutional 

layers versus ordinary convolutional layer. In all tests, the number of inner ensembles is set to m 

= 3, to speed up computations. We also compare the results of an ensemble of models trained 

using convolutional layer and an ensemble of models trained using IEA of convolutional layers. 

The ensemble of IEA of convolutional layers can be described as an outer and inner ensemble in 

a CNN. 

 

Figure 4.1: Illustration of IEA structures inside a CNN model. Left: a regular ResNet block; Right: a ResNet 

block constructed by replacing each convolutional layer (including the following batch normalization layer 

and activation layer) with an IEA component. 

4.1 Mnist and Rotated-Mnist Datasets 

The MNIST dataset is one of the earliest datasets in computer vision and machine 

learning. The MNIST dataset contains 60,000 training set examples and a test set of 10,000 

examples of handwritten digits. The rotated-MNIST dataset contains 62000 randomly rotated 

handwritten digits. The rotatedMNIST dataset is split into a training and test sets of size 50000 

and 12000 respectively. 

We assembled several vanilla (standard) CNN models and trained on both datasets. Each 

model contains one to three layers. We define a convolutional layer as composition of a weight 

matrix that applies a 2D convolution over an input signal, the following batch normalization 

layer and rectified linear unit (ReLU) activation function (Hahnloser et al., 2000). Then a max-

pooling layer is stacked after each convolutional layer. Finally, an average-pooling layer is 

connected before plugging into a classification head. We then expand these small CNN models 

by replicating any convolutional layers by three and adding an average pooling layer, making it 
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an IEA with m = 3. Accordingly, we use m = 1 to represent regular convolutional layers. 

Therefore, we have six different models to test on MNIST/rotated-MNIST datasets. 

The models were trained using stochastic gradient descent (SGD) (Bottou, 2010) 

optimization algorithm with a momentum (Polyak, 1964) set to 0.9 and weight decay (Krogh & 

Hertz, 1992) set to 5e-4. The initial learning rate is 0.1 and it was divided by 10 for every 100 

training epochs. The total number of training epochs is 350. The training datasets were not 

augmented, and the same initialization settings were kept the same between the models. 

Table 4.1 describes the results on the MNIST test dataset. The usage of IEA of 

convolutional layers leads to an increase in performance over convolutional-layer-only models. It 

can be seen that the error rate of the one-layer model decreased by 0.18%. By going deeper with 

one more layer, the mean error rate improved by 0.76% with just two IEA layers. We achieve a 

mean error rate of 0.45% on the MNIST dataset by just using three layers deep model. 

Even with replications inside the architecture, we can still exploit ensemble of several 

IEA models to increase the predictive power. Table 4.2 shows the performance of the average 

ensemble of three IEA models versus an ensemble of three convolutional-layer-only models. To 

distinguish from inner ensemble, we use k to indicate the number of models in an outer ensemble 

of identical, yet independently trained networks. In our case, k is 3. As for the one-layer model, 

both ensemble of IEA of convolutional layers and convolutional-layer-only model show the 

same performance. The ensemble of IEA models shows a better performance than the ensemble 

of convolutional layers only based model when two or three layers are used. 

Table 4.1 Test set mean error rates and standard deviation in percentage on the MNIST dataset with 

different configurations of the tested model architecture. m = 1 indicates regular CNNs and m = 3 indicates a 

CNN with IEA that consists of three replications of a convolutional layer. 

Model depth m = 1 m = 3 

1 layer 1.52± 0.02 1.34± 0.03 

2 layers 1.45± 0.03 0.69± 0.01 

3 layers 1.46± 0.12 0.45± 0.02 

 

Table 4.2: Test set error rates in percentage of average ensemble models on the MNIST dataset with different 

configurations of the tested model architecture. k represents the number of individual networks within an 

ensemble 

Model 

depth 

m = 1,k = 3 m = 3,k = 3 

1 layer 1.32 1.32 

2 layers 1.39 0.68 

3 layers 1.48 0.38 

 

Table 4.3 describes the rotated-MNIST test dataset results. In this case, the usage of IEA 

of convolutional layers still leads to significant improvements over convolutional-layer-only 

models. It can be seen in the case of the one-layer model that the IEA of convolutional layers 

model significantly improves the accuracy compared to convolutional-layer-only models. The 
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performance increases when more layers are added (deeper model). We can see a drop of the 

mean error rate by 0.41% in the case of two layers deep model, and a drop of 0.68% with three 

layers deep one. These results show the capability of IEA in decreasing the total model variance. 

Table 4.4 shows the case of average ensemble of three IEA of convolutional layer models and 

convolutional-layer-only models. In the case of a one layer deep model, the ensemble of 

convolutional layer models is better than the ensemble of IEA of convolutional layer models. 

When more layers are considered, the ensemble of IEA of convolutional layer models 

outperforms the ensemble of convolutional-layer-only models, except in the case of two layers 

model were the ensemble of convolutional-layer-only models has a slightly better performance. 

We attribute this behavior to the selection of hyper-parameters. Also, an error rate of 5.33% is 

achieved using three layers deep model with IEA of convolutional layers. 

Table 4.3: Test set mean error rates and standard deviation in percentage on the rotated-MNIST dataset with 

different configurations of the tested model architecture. 

Model depth m = 1 m = 3 

1 layer 47.06± 0.33 21.18± 0.37 

2 layers 10.47± 0.09 10.06± 0.05 

3 layers 6.72± 0.27 6.04± 0.04 

4.2 CIFAR-10 DATASET 

The CIFAR-10 dataset consists of 60000 color images of size 32x32 and contains 10 

classes. There are 50000 training images and 10000 test images. Well-known object detection 

models including VGG16 (Simonyan & Zisserman, 2014), residual network with 18 layers 

(ResNet18) and 101 layers (RestNet101) (He et al., 2015), Mobilenet (Howard et al., 2017), 

Densely Connected Convolutional Networks with 121 layers (DenseNet) (Huang et al., 2017), 

Wide ResNet (Zagoruyko & Komodakis, 2016), and ResNext (Xie et al., 2017) were trained on 

the CIFAR-10 dataset. 

Table 4.4: Test set error rates in percentage of average ensemble models on the rotated-MNIST dataset with 

different configurations of the tested model architecture. 

Model 

depth 

m = 1,k = 3 m = 3,k = 3 

1 layer 45.61 19.27 

2 layers 8.93 8.95 

3 layers 5.86 5.33 

 

 

Note that Wide ResNet and ResNext are trained on the CIFAR-10 dataset that is 

augmented using image translation and mirroring. In these models, the convolutional layers were 

replaced by IEA layers. The training was done using non-augmented training samples. The 

training configuration is the same as the configurations mentioned in section 4.1. The training 

and validation curves can be found in the supplementary materials. 
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Table 4.9 shows an overall improvement in classification mean error rates on the CIFAR-

10 dataset. VGG16 had a 0.64% mean error rate improvement by using IEA of convolutional 

layers. ResNet18 and ResNet101 were improved by 1.0%, 0.52% mean error rates respectively 

by using IEA compared to convolutional layer. A significant improvement is seen in MobileNet 

by 3.09% error rate when using IEA. DenseNet shows an improvement of 0.13% by using IEA 

of convolutional layers. Wide ResNet and ResNext also improves. To test the effect of models 

ensemble, Table 5.1 shows an ensemble of previously mentioned models. We average an 

ensemble of three models using IEA of convolutional layers and another three models using 

convolutional layers only. The ensemble of IEA of convolutional layers models shows a better 

performance than the convolutional-layer-only models. 

Table 4.5: Test set mean error rates and standard deviation in percentage on the CIFAR-10 dataset. 

Model m = 1 m = 3 

VGG16 9.88± 0.16 9.24± 0.29 

ResNet18 10.58± 0.14 9.58± 0.02 

ResNet101 9.39± 0.20 8.87± 0.34 

MobileNet 13.50± 0.05 10.41± 0.23 

DenseNet 7.50± 0.07 7.37± 0.10 

Wide ResNet 5.43± 0.63 4.47± 0.03 

ResNext 4.29± 0.13 3.29± 0.05 

 

Table 4.6: Test set average ensemble error rates in percentage on the CIFAR-10 dataset. 

 

 

 

 

4.3 CIFAR-100 DATASET 

The property images in the CIFAR-100 dataset is identical to that of the CIFAR-10, 

except that it has 100 classes containing 600 images each. There are 500 training images and 100 

testing images per class. Compared to previously investigated datasets, the CIFAR-100 dataset is 

much larger and models can truly manifest their power when benchmarked against it. Note that 

the CIFAR-100 dataset here is augmented using image translation and/or mirroring. 

In this section, we plug IEA into Wide ResNet and ResNext and train them on the 

CIFAR-100. In 
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Table 4.7, our experiments show that even if our implementation of both networks 

perform worse than the original paper, our Wide ResNet and ResNext with IEA achieve 

considerable results. Spcecifically, Wide ResNet with IEA decreases the error rate from 18.85% 

(Zagoruyko & Komodakis, 2016) to 

18.03% on CIFAR-100. ResNext with IEA achieves performance on par with ResNext 

(Xie et al., 

2017). Further, we use outer ensemble to combine individual networks and show in  

Table 4.8 that IEA will by no means exhaust the power of variance reduction and outer 

ensemble can still obtain considerable performance boost. Our results confirm that IEA can still 

boost the model performance on large scale datasets. The training and validation curves can be 

found in the supplementary materials. 

Also, in order to understand the computational overhead of using IEA Table 5.2 states the 

inference time per image in milliseconds over the CIFARA-100 validation data set. It can be 

seen that m = 3 Wide ResNet inference time is the same as m = 1 ResNext. Meanwhile, we can 

tell that IEA introduces almost m times computational overhead when used and this is a future 

research point. 

Table 4.7: Test set mean error rates and standard deviation in percentage on the CIFAR-100 dataset. 

Model m = 1 m = 3 

Wide ResNet 22.56± 0.75 18.03± 0.19 

ResNext 20.43± 0.33 17.67± 0.23 

 

Table 4.8: Test set average ensemble error rates in percentage on the CIFAR-100 dataset. 

 

 

Table 4.9: Test set mean error rates and standard deviation in percentage on the CIFAR-10 dataset. 

Model m = 1 m = 3 

Wide ResNet 5.43± 0.63 4.47± 0.03 

ResNext 4.29± 0.13 3.29± 0.04 
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Chapter 5.  Visualization and Analysis of Iea Features 

5.1 Visual Interpretation Of Iea Features 

To understand how IEA works and produces better results than ordinary convolutional 

layer, we visualized the features generated by both. Table 5.3 shows different features generated 

by IEA layers and convolutional layer. It is noticeable that the features generated by IEA tend to 

be more unique and different from each other, unlike convolutional layers where some features 

appear to be identical. Also, in the first row of Table 5.3 where the deep model is only 1 layer 

deep, there exist some IEA features that are associated with zero weight after training. This 

demonstrates that IEA removed some unnecessary features from the model, which helps 

improving robustness. 

Table 5.1: Test set average ensemble error rates in percentage on the CIFAR-10 dataset. 

 

 

Table 5.2: Inference time for models trained on CIFAR-100 in milliseconds per image using NVIDIA 

GeForce GTX 1080Ti GPU. 

Model m = 1 m = 3 

Wide ResNet 0.8 ms 2.36 ms 

ResNext 2.1 ms 6.94 ms 

 

5.2 Similarity Scores 

We use similarity scores λ to validate the visual interpretation of the IEA features. The 

similarity score measures how similar an image to another image. If both image of comparison 

are the same, the similarity score value will be zero. The more difference between the images the 

more the value of similarity score increases till it reaches the maximum value which is 1. Thus, 

the usage of similarity score is handful to measure how unique a feature compared to other 

features produced by the same layer. We introduce the mean sum of similarity score (mss-score) 

µλ as follows: for each n features f in a layer the mss-score is defined as: 

  (2) 

The higher the mss-score is, the more unique the features produced by the model are. For 

the similarity score measurement, we used the similarity score model introduced by (Zhang et 

al., 2018) which is proven to outperform any previous similarity score measurements methods. In 

Figure 5.2, the IEA and convolutional layer mss-scores were evaluated on a batch of 100 

validation samples from the rotated-MNIST dataset. The IEAs mss-scores are always greater 
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than the convolutional layer mss-scores. This indicates that the usage of IEA produces more 

unique features compared to convolutional layer features, and it confirms our visual analysis. 

5.3 Comparison With Maxout Features 

To develop the understanding of the features generated by using IEA, we compare IEA 

features against the features generated by MaxOut. A one layer vanilla CNN with 48 features 

channels were trained using MaxOut, the max parameter of MaxOut is set to 3 leading to a 

network that is similar in the parameters size to the IEA one. By setting the max parameter to 3, 

the 48 features turns into 16 features, this fortifies a fair comparison with the IEA features on the 

same model. The training settings were the same as mentioned in section 4.1 but with a lower 

learning rate set to 0.001 initially. 

The trained MaxOut model had an error rate of 21.86% on the rotated-MNIST validation 

dataset. Visuallay, we can tell that the MaxOut features are more unique than the Vanilla CNN 

features but they have some similarity in between. Also, MaxOut did not produce such a unique 

set of features like IEA. One expects that the MaxOut features mss-score to be larger than 

Vanilla CNN ones, when we computed it had a value of 0.01084 almost the third of the mss-

score value of Vanilla CNN mss-score obtained from Figure 5.2. This was surprisingly to us. To 

investigate this behavior, We state these two facts. Firstly, we calculate the mss-score over a 

validation batch of 100 images. Secondly, because the MaxOut chooses the max filter between 

groups this will results in a different model for each input.This suggest that each input image will 

have a different similarity score as the model behavior changes based on the input.This could 

lead in total to obtain a low mss-score, also it suggests that it is a drawback of MaxOut compared 

to IEA. 
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Figure 5.1: Features generated by vanilla CNN with IEA components and regular convolutional layers. Row 

1, 2, 3 of the table respectively show the features from the first layer of one, two and threelayered deep 

models. The models were trained on the rotated-MNIST dataset. The input images are shown in a gray scale 

while the features are shown using a heat map color. The black shade in the heat map indicates a minimum 

pixel value, while the white color indicates a maximum pixel value. 
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Table 5.3: The mss-scores of features generated by convolutional layers and IEAs. The score is measured for 

the first layer only in the models. The models were trained on rotated-MNIST dataset. 

Model 

depth 

m = 1 m = 3 

1 layer 0.034 2.797 

2 layers 0.020 0.025 

3 layers 0.020 0.038 

 

Figure 5.2: Features generated by plain vanilla (standard) CNNs with IEA components and the same model 

using MaxOut. The models were trained on the rotated-MNIST dataset. The input images are shown in a 

gray scale while the features are shown using a heat map color. The black shade in the heat map indicates a 

minimum pixel value, while the white color indicates a maximum pixel value. 
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Chapter 6.  Neural Network Model For Trajectory Prediction 

 

In the present work, we are interested in predicting the trajectories of users evolving in a 

bounded spatial domain.   

In this framework, the video data generated by the drone is first used to detect the 

position of all users present in the image, using standard image recognition techniques. The 

detection and trajectory estimation processes are illustrated as in Figure 6.1. 

Figure 6.1: Overview of the trajectory tracking algorithm developed as part of this work. 

 

 

 

 

The first step involve filming a scene using a drone (or an overhead camera), generating 

high resolution video data. The objects present in this scene are then detected using standard 

image recognition algorithms, and mapped into several object classes (e.g. pedestrians, bicycles 

or cars). Once classified, the object trajectories are regularized between images, and the 

individual object trajectories are obtained. These individual trajectories are used as a basis for 

estimating future trajectories of the same users, using deep neural networks. The IEA technique 

shown in this report is then used to avoid overfitting the model. Once this future trajectory is 

known, it can be broadcast to other users via low latency radio links (for example 5G links), and 

displayed to the users, for example using Augmented Reality (AR) devices. 
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Chapter 7.  Conclusion 

IEA is a concept that is simple but powerful. It helps the CNN architecture to increase its 

prediction power by forcing the model to produce more unique features. The cost of using IEA in 

a CNN is on the model parameter size, yet it is not a significance cost to the improvement in the 

performance. We showed empirically, visually and by using a similarity scores that the usage of 

IEA improves the CNN accuracy and produces unique features. Also, the ensemble of IEA of 

convolutional layers models outperforms the ensemble of convolutional-layer-only model which 

is a method of inner and outer ensemble. We recommend the usage of IEA where it applies, and 

a further study of other methods of ensembles shall be conducted. 

Our future work also include minimizing the inference time of IEA by finding a criteria 

for disabling the non-important features and validating the results on traffic datasets, from which 

user position will be extracted using CNNs, and trajectories will be estimated using IEA 

methods. 
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